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Abstract 

Data parallel languages, such as High Performance Fortran, can be successfully applied to a wide 
range of numerical applications. However, many advanced scientific and engineering applications 
are multidisciplinary and heterogeneous in nature, and thus do not fit well into the data parallel 
paradigm. In this paper we present Opus, a language designed to fill this gap. The central concept 
of Opus is a mechanism called ShareD Abstractions (SDA). An SDA can be used as a computation 
server, i.e., a locus of computational activity, or as a data repository for sharing data between 
asynchronous tasks. SDAs can be internally data parallel, providing support for the integration 
of data and task parallelism as well as nested task parallelism. They can thus be used to express 
multidisciplinary applications in a natural and efficient way. In this paper we describe the features 

of the language through a series of examples and give an overview of the runtime support required 
to implement these concepts in parallel and distributed environments. 

"This research was supported by the National Aeronautics and Space Administration under NASA Contract No. 
NAS1-19480, while the authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681. 



1    Introduction 

With the arrival of teraflop architectures, the complexity of simulations being tackled by scientists 
and engineers is increasing exponentially. Many of these simulations are of a complex, "multi- 
disciplinary" nature, constructed by pasting together modules from a variety of related scientific 
disciplines. This raises a host of new software integration issues. While data parallel languages, 
like HPF [21], are well-suited to exploiting the parallelism in each module [10], they offer little 
support for integration and also do not exploit the coarse grained parallelism that multidisciplinary 
applications frequently provide. 

One example of a multidisciplinary application is environmental simulation. One might, for 
example, have a sequence of models, such as a) a swamp biology model for the Everglades, b) a 
hydrothermal model for the Gulf stream, c) a mesoscale climate model and d) a solar radiation 
model. The goal is then to interconnect these models into a multidisciplinary model subsuming the 
original models together with their various couplings. 

Another example is multidisciplinary optimization (MDO). Designing a modern aircraft, for 
example, requires a wide variety of interacting disciplines: aerodynamics, propulsion, structural 
analysis, controls, and so forth. An optimal engineering design is necessarily an admixture of 
suboptimal designs in each discipline. The essential goal is to correctly couple a set of complex 
scientific and engineering programs from different disciplines, into a coherent whole capable of 
effective multidisciplinary optimization. 

Implementing multidisciplinary applications raises a number of complex programming issues. 
One is that the constituent programs being glued together are typically written by different groups, 
using different data structures and approaches. Moreover, the mix of programs involved typically 
changes over time. In the environmental simulation, for example, one might find it necessary to 
add a model of airborne particle transport to correctly predict solar heating. Similarly, in MDO of 
an aircraft, one might need to replace a simple linear flow solver by a more sophisticated Euler or 
Navier-Stokes code. 

In such large-scale programming projects, statically forming a "task graph" and coupling tasks 
via "message plumbing" is virtually unworkable. A much more flexible software environment ap- 
pears to be critical. At the same time, one wants to effectively exploit the parallelism both within 
and across the separate discipline models. Exploiting the coarse-grained parallelism in multidisci- 
plinary applications requires facilities for spawning and synchronizing collections of tasks, each of 
which might contain internal data parallelism. 

We have recently designed a coordination language, called Opus, targeted towards such appli- 
cations. It provides a software layer on top of data parallel languages, such as HPF, designed to 
address both the "programming in the large" issues and the parallel performance issues arising in 
complex multidisciplinary applications. 

The heart of Opus is a new mechanism, called ShareD Abstraction (SDA). SDAs borrow from 
object-oriented systems in that they encapsulate data and the methods that act on the data, and 
from monitors in shared memory languages in that an active method has exclusive access to the 
data of an SDA. 

Tasks, i.e., asynchronously executing autonomous activities, are instantiated in Opus by cre- 
ating instances of SDAs and invoking the associated methods.  Different SDAs represent distinct 



address spaces, hence Opus tasks do not directly share data. Instead, interaction between tasks is 
accomplished by invoking methods in other SDAs. Thus, a set of tasks may share a pool of common 
data by creating an SDA of the appropriate type and making the data SDA available to all tasks 
in the set. Using SDAs and their associated synchronization facilities also allows the formulation of 
a range of coordination strategies for these tasks. This set of concepts forms a powerful tool which 
can be used for the hierarchical structuring of a complex body of code and a concise formulation 
of the associated coordination and control mechanisms. 

The runtime system supporting Opus utilizes lightweight, user-level threads that are capable of 
supporting both intra- and inter-processor communication primitives in the form of shared memory, 

message-passing, and remote service requests [20]. This allows the independently executing SDA 
tasks to freely share the underlying parallel resources. 

The remainder of the paper is organized as follows: The next section discusses the language 
extensions defined in Opus and their use. Section 3 presents a couple of multidisciplinary applica- 

tions, using the concepts introduced in Section 2. Section 4 outlines the runtime support necessary 
for implementing these extensions. This is followed by a section on related work and a brief set of 

conclusions. 

2    The Opus Language 

There are a number of constraints which must be satisfied by any general framework which supports 
the coupling of multiple programs into complex multidisciplinary codes. In particular, we have 
identified the following requirements: 

• The separate programs should be "encapsulated" into modules in a way that respects their 
separate name spaces. 

• Coupling between modules should be at the highest level (as opposed to having message- 
passing constructs throughout the code). 

• Both task-level parallelism between modules, and data parallelism within each module should 
be expressible. 

• Flexible and general synchronization mechanisms should be provided to allow the programmer 
maximal freedom in exploitation of task-level parallelism. 

The first two of these requirements are motivated by software-engineering considerations. Their 
purpose is to simplify the combination of component modules, enable the definition of clear inter- 
faces between modules, and allow modules to be intermixed without rewriting their internal code. 
This is in contrast to message-passing models, which combine modules with no clear interface 

definition. 
The other two requirements are needed for performance. Multidisciplinary codes are among 

the largest and most computationally intensive codes, so that any language designed for such 
applications must have the potential to fully exploit highly parallel architectures. 

To fulfill these requirements, Opus introduces a new construct called a ShareD Abstraction 
(SDA). This concept supports the development of MDO codes by providing data and method 



encapsulation. SDAs can be used as computation servers as well as shared data repositories. We 
use the well-developed HPF facilities for data parallelism within each SDA, while borrowing ideas 
from operating systems for inter-module communication and task-level parallelism. 

In this section, we describe the most important constructs of Opus and illustrate them by 
applying them to the standard producer-consumer problem. A simple meteorological coordination 
problem and a more challenging example - taken from the domain of aircraft design - will be 
discussed in the next section. 

2.1 The Features of Opus 

Opus introduces a small set of features for defining and using SDA objects and accessing SDA 
data. It provides language constructs to define SDA types, declare SDA variables, create, initial- 
ize, terminate, and save SDA objects, as well as activate SDA methods both synchronously and 
asynchronously. The syntax borrows heavily from Fortran 90. 

We summarize the way in which these features are used to build an Opus application below. 
A full description of the language features can be found in [24]. An SDA type in Opus specifies 
an object structure, containing data along with the methods (procedures) which manipulate this 
data. An SDA object (which we usually simply refer to as an SDA) is generated by creating an 
instance of an SDA type. The creation of an SDA involves allocation of resources on which the SDA 
will execute, the allocation of data structures in memory and any initializations that are necessary 
to establish a well-defined initial state. The lifetime of an SDA is the time interval between its 
creation and its termination. During this interval, the SDA exists and can be accessed via method 
calls. SDA variables are handles through which SDAs are accessed from within a program. 

There are two ways of invoking a method of an SDA: synchronously, where the caller is 
blocked until control returns, or asynchronously, by a non-blocking call. An asynchronous method 
execution may be associated with an event, which can be used for status inquiries and synchro- 
nization. No two method executions belonging to the same SDA can execute in parallel; as a 
consequence each method has exclusive access to the data of its SDA. A method may have an asso- 
ciated condition clause, specifying a logical expression, which guards the method's activations. 

An SDA can be saved by copying it to external storage, thus generating an external SDA, 
which is identified by a unique external name. External SDAs are persistent, having an a priori 
unlimited lifetime. Saving an SDA thus makes it accessible for later reuse, by loading an external 
SDA into memory. 

Each SDA is associated with a unique (SDA) task, which is the locus of all control activity 
related to the SDA. The SDA task operates on the resources allocated to the SDA, provides an 
address space for the SDA's data, and manages the execution of calls to the SDA's methods. The 
execution of an Opus program can be thought of as a system of SDA tasks in which a task executes 
a method of its SDA in response to a request from another SDA. 

2.2 The Producer-Consumer Problem 

We introduce the syntax and semantics of the Opus language by developing an Opus solution 
to the standard producer-consumer problem. This simple problem, in which a set of producers 
generate data which are processed by a set of consumers, is also the basis for a number of real- 



world applications. Our version creates a system in which each individual producer and consumer 

operates independently. Synchronization between them is provided by controlling their access to a 

bounded FIFO buffer. 

To do this, the first step is to define an SDA type which encapsulates the data structures 

required to implement the bounded buffer along with the access methods which permit producers 

to write to the buffer and consumers to read from it. 

SDA TYPE  buffer-type (size) 

INTEGER :: size 

REAL :: fifo(0:size-l) 

INTEGER, READ-ONLY 

INTEGER :: px=0 

INTEGER :: cx=0 

count = 0 / number of full elements in FIFO 

! producer index 

! consumer index 

CONTAINS 

/ method part 

END buffer-type 

The above fragment shows the data structure created to define a buffer which may hold up to size 

data items of type REAL. Specification of the value of size is deferred until the actual creation of an 

SDA (see below). The variable count keeps track of the current number of elements in the buffer, 

while px and ex point to the current index positions for producers and consumers respectively. 

In contrast to Fortran modules, the internal variables of an SDA type are by default private, 

i.e., are accessible only from the methods associated with the SDA. The keyword PUBLIC can be 

used to change this default for the whole SDA or to control the accessibility of individual variables. 

Opus extends Fortran by supporting the attribute READ-ONLY, which allows SDA variables, such 

as count above, to be accessed but not modified from outside. 

Next, access methods for reading from and writing to the buffer have to be defined. The 

producers may write data to the buffer only if the buffer is not full, while consumers may read data 

only if the buffer is not empty. Opus enables conditional execution of a method by permitting a 

condition clause, containing a side-effect free logical expression, to be associated with a method. 

The condition is evaluated when the method is invoked, and the method can only be activated 

if the result is true. If it is false, the method activation request is enqueued until the condition 

evaluates to true. This can happen as a result of another method call that changes variables on 

which the condition depends. 

Our formulation defines two methods: subroutines get and put for reading from and writing to 

the buffer respectively. These are shown below: 

SUBROUTINE put(x) WHEN (count .LT. size)   / condition tests assertion: buffer not full 

REAL, INTENT(IN) ::   x 

fifo(px) = x / Put x into first empty buffer element 

px = MOD(px+l,size) 

count = count + 1 

END 



SUBROUTINE get(x) WHEN (count .GT. 0)   / condition tests assertion: buffer not empty 
REAL, INTENT(OUT) :: x 

x = fifo(cx) / Read next full buffer element 
ex = MOD (cx+1,size) 
count = count - 1 

END 

The condition clauses control access to the buffer, allowing put methods to be executed only 
when the buffer is not full and get methods to executed only when the buffer is not empty. If 
we combine these methods with the data declarations defined above, the interface between the 
producer and consumer tasks is fully specified. 

One of the critical features of SDAs is the atomicity of method executions. In order to avoid 
incoherent states of the data associated with any given SDA, methods are executed as atomic 
operations. That is, any executing method has complete and sole access to all the internal data 
structures of the SDA. Thus, the get and put methods above can access and modify shared variables, 
e.g., fifo and count, without interference from other activations of the methods. 

The dummy arguments of an SDA type specification are all of intent IN and therefore passed 
in by value. Methods are arbitrary procedures, and may have arguments of any intent, which are 
passed with copy-in/copy-out semantics. 

The producer and consumer tasks must now be asynchronously activated and linked with the 
SDA in such a way that they are able to write and read the buffer, respectively. This is implemented 
as follows. First, an SDA variable, buffer, of the SDA type bufferJype is declared as shown below: 

INTEGER    buffersize 
SDA (buffer _type)   buffer 

READ   *, buffersize 
CALL buffer%CREATE(buffersize) 

CREATE is an implicit method which is called to create the SDA object to be associated with 
the variable buffer. The variable buffersize is passed in as the actual argument which is associated 
with the formal argument size and is used to allocate the internal data structures of the SDA. 
CREAreallocates and initializes the SDA object. The user may augment the system initialization 
by defining an INIT method which is implicitly called after the call to CREATE. Opus provides 
other methods which are implicitly declared for all SDA types: SAVE, LOAD, and TERMINATE. 

SAVE permits the saving of the internal state of an SDA to a named external object, while 
LOAD allows the creation of an SDA object based on an external object. SAVE and LOAD provide 
the minimum language support required for dealing with persistent SDAs. For convenient use of 
this mechanism in real applications several extensions are desirable. We are currently studying 
additional language features focusing on partial saving, the relaxation of the type conformity re- 
quirements in LOAD, and input/output, in particular using smart files [18] for external storage of 
the data. 

In general, the lifetime of an SDA object extends from the time it is created to the time that 
the execution leaves the scoping unit in which the SDA declaration was originally processed.  At 



this time the SDA is implicitly terminated. The TERMINATE method can be called to explicitly 

terminate an SDA and free its associated storage. 
Note also that the language provides facilities to specify system resources at the time of ini- 

tialization of the object either through the CREATE or LOAD methods (see next section for some 

examples). 
Once the SDA object has been created, its public data can be accessed and the associated 

methods called using a syntax similar to that used for derived types in Fortran. Thus, for example, 
the consumers can invoke the get method for the SDA buffer as follows to access the next data 
element. 

CALL buffer%get(A) 

The above statement designates a synchronous method activation which will block the 

caller until the method call returns. 
In order to support concurrent activity, Opus also provides asynchronous method activation 

in which the caller is not blocked by the method call. For example, in the code below, a spawn 

statement is used to invoke the method get asynchronously. 

EVENT E 

E = SPAWN buffer%get(A) 
/ Do other work. 

WAIT(E) 

The spawn statement returns an event which is assigned to the event variable E. The calling unit can 
continue its computation and use the event variable in a wait statement, as shown above, to wait 
for the completion of the associated method call. This allows the caller and the invoked method 
to execute in parallel, in this case overlapping computation with "getting" data elements from the 
buffer. 

A nonblocking alternative to the wait statement, TEST (E), allows the caller to test for the 
completion of an asynchronous method invocation. It returns the current completion state. 

As with SDA methods, the spawn statement can also be used with generic Fortran subroutines 
to generate concurrent activity. Thus, in the full producer-consumer code, as shown in Figure 1, 
np copies of the subroutine produce and nc copies of the subroutine consume are spawned as 
asynchronously executing tasks. Each is passed the SDA variable buffer which they use as a shared 
resource for communicating values. Note that we have omitted the code for terminating these tasks. 

3    Multidisciplinary Applications Using Opus 

Multidisciplinary applications, including the important subclass of multidisciplinary optimization 
(MDO) problems, are commonly formed by combining data parallel units from various disciplines 
to create a single application. With the increase in the size of computing systems available and 
the improved access to them, development of such applications, and the complexity of the coupling 
between the individual components is steadily increasing. Below we introduce two examples. The 



PROGRAM ConsumerJProducer 
INTEGER np, nc, buffersize 
SDA(buffer_type)   buffer 

READ (np,nc,buffersize) 
CALL buffer%CREATE(buffersize) 

DO i= 1, np 
SPAWN produce(buffer, ...) 

END DO 
DO i= 1, nc 

SPAWN consume (buffer, ...) 
END DO 

END 

'.Spawn producers 

.'Spawn consumers 

SDA TYPE   buffer_type(size) 
INTEGER ::  size 
REAL     ::  fifo(0:size-l) 
INTEGER, READ-ONLY :: count=0 
INTEGER ::   px=0, cx=0 

CONTAINS 
SUBROUTINE put(x) WHEN (count XT. size) 

REAL, INTENT(IN) :: x 
fifo(px) = x; px = MOD(px+l,size); count = count + 1 

END 

SUBROUTINE get(x) WHEN (count .GT. 0) 
REAL, INTENT(OUT) :: x 
x = fifo(cx); ex = MOD(cx-fl,size); count = count - 1 

END 
END buffer_type 

SUBROUTINE produce(b, ...) 
SDA (buffer-type) b 

DO WHILE    (.TRUE.) 
/ produce a data item A 

CALL b%put(A) 
END DO 

END produce 

SUBROUTINE consume(b, 
SDA(buffer.type) b 

DO WHILE   (.TRUE.) 
CALL b%get(A) 
/ consume A 

END DO 
END consume 

Figure 1: Producer/Consumer Problem Using Opus 



first of these, taken from meteorology, has a simple and well-defined interaction between its two 

component modules. The next example is a simplification of an MDO application for aircraft design 

with rather more complex interaction patterns. 

3.1     Opus for Data Parallel Applications 

One situation in which the kind of interaction described in the producer-consumer program might 

occur in practice is the coupling of a global numerical weather prediction (NWP) model with a 

limited area forecast model. In this case, the boundary areas of the limited area model are refreshed 

by the interpolation of results from the global model at time steps corresponding to fixed intervals 

over the time period of the prediction. We use this very simple coupling example to consider the 

data parallel requirements of an Opus application. 

We assume that the global NWP program global and the local NWP program local have been 

independently developed and that they are available as distinct HPF applications. A simple data 

interface is required for their coupling. 

The program global will write the data set corresponding to the boundary areas of the limited 

area model to an SDA at the appropriate intervals, from which it will be read in by local. In order 

to maintain accuracy in the limited area computation, it is important that local receives the data 

sets from global in their chronological order and that all of them be processed. The amount of data 

being transferred dictates that only a small number of data sets be stored at any time; here, we 

assume that only one such data set is to be saved in the SDA for reading by local. 

The following code fragment shows part of the definition of the SDA type shared^metdata which 

is used with a series of methods to read and write a number of different fields of meteorological 

data. We show just a few variables here: in practice, there are likely to be on the order of half 

a dozen different quantities. HPF directives are used to distribute the arrays by blocks to the 

processors on which the SDA is executed. 

SDA TYPE shared_metdata(size) 

!HPF$ PROCESSORS P(number_of_processors())    '.HPF directive specifing the processor set 

INTEGER :: size 

/ data fields used to save boundary values: 

REAL     :: temp(size) 

REAL      :: xvelo (size) 

!HPF$ DISTRIBUTE (BLOCK) ONTO P:: temp, xvelo       / HPF directive to distribute 

! data by blocks across the processors 

LOGICAL   :: tempmarker  = .FALSE.    / variable used to indicate   whether unread 

! data is stored in the SDA 

CONTAINS 
SUBROUTINE puttemp(restemp) WHEN (tempmarker .EQ. .FALSE.) 

/ puttemp stores global temperatures in the SDA array temp 

REAL, INTENT(IN)      :: restemp(size) 

!HPF$    DISTRIBUTE (BLOCK) :: restemp 



temp = restemp 
tempmarker = .TRUE. 

END 

SUBROUTINE gettemp(boundtemp) WHEN (tempmarker .EQ. .TRUE.) 
/ gettemp reads global temperatures from the SDA array temp 

REAL, INTENT(OUT)       :: boundtemp(size) 
!HPF$    DISTRIBUTE (BLOCK) :: boundtemp 

boundtemp = temp 

tempmarker = .FALSE. 
END 

END shared _metdata 

The next step is to create an SDA of the above type and spawn the local and global codes which 
would use the SDA to transfer data. This is shown in the code fragment below: 

!HPF$ PROCESSORS R(32) 
SDA(shared_metdata)   boundary 

CALL boundary%CREATE(insize) ON (PROCESSORS R(l:16) ) 

SPAWN global(boundary, ...) ON (PROCESSORS R(17:32) ) 
SPAWN local(boundary, ...)   ON (PROCESSORS R(l:16) ) 

In this coordination application, the two methods are asynchronously invoked on two distinct 
sets of processors of the available computing system to run the weather codes (these may well be 
on different computers in practice). An HPF directive has been used to declare the processors 
involved; it specifies both the number of processors and gives them a global name. This is then 
referred to in the method calls which create the SDA and asynchronously spawn the global and 
local codes. Thus the user can ensure that the two applications run on different sets of processors 
and that an appropriate set of processors is allocated for each code. In the above code, a decision 
has been made to locate the data produced by global on the same processors as the code, local, 
which will read them. HPF notation has also been used to distribute the data associated with the 
SDA. We may assume that the specification of this distribution enables the reading of data to be 
performed locally when the method gettemp is invoked. 

In practice, a non-trivial filter will be required to transfer data between two such models: not 
only will the grid points have different distances, the models may well use different coordinate 
systems. We do not consider this aspect here. 

3.2    MDO for Aircraft Design 

In this subsection we present a short description of the multidisciplinary design of an aircraft and 
then discuss how one version could be encoded using the Opus language constructs. The overall 
goal of the application is to optimize the design of an aircraft relative to some goal or "objective 



function," such as minimization of gross weight. This is done subject to constraints such as specified 

range and payload. The design cycle starts with these constraints and goals, a base geometry and 

initial values for a set of design variables, such as sweep angle of the wing and thrust of the engines. 

Then, in each cycle, an analysis phase analyzes the current configuration of the aircraft, as specified 

by the design variables, to produce a set of output variables, such as lift and drag. The optimizer 

then evaluates the objective function for this configuration to produce new values of the design 

variables. Effective optimizers are Newton-like methods which require "sensitivity derivatives," the 

derivatives of the output variables with respect to the design variables. This optimization cycle 

continues until the process converges to a final "optimized" configuration of the aircraft. 

The analysis phase consists of the various discipline codes, such as aerodynamic analysis, struc- 

tural analysis, controls, etc., interacting with each other to analyze the current definition of the 

aircraft. Some disciplines, such as aerodynamic or structural analysis, exhibit a large degree of 

internal parallelism and thus require substantial physical resources for execution. However, other 

disciplines are generally simpler and should most likely be executed sequentially. The amount of 

data exchanged during the analysis phase is dependent on the disciplines involved and ranges from 

a few bytes to millions of bytes. Sometimes, this data needs to be "massaged," or filtered, before it 

can be used. For example, pressures produced at the aerodynamic grid points by the flow analysis 

code have to be integrated to produce forces at the structural grid points for structural analysis. 

The interactions between the discipline codes can take different forms depending on the problem 

at hand and the target environment. In a sequential environment, the various discipline codes are 

generally executed as a pipeline. In a simple parallel variant, multiple versions of the analysis 

pipeline can be executed on slightly perturbed values of the design variables in order to obtain the 

required derivatives using finite-differences. In more complex parallel versions, such as the one we 

describe here, the discipline codes execute asynchronously, with data being exchanged at various 

points in the code, such as at the boundaries of the internal optimization cycles. For this latter 

approach, the data exchanges must be synchronized to ensure that consistency is maintained. 

3.2.1     Opus Code 

We now describe a version of the above application using Opus in which the codes in the analysis 

phase execute in parallel. The analysis phase has been simplified to the simultaneous optimization 

of the aerodynamic and structural design of an aircraft configuration. Though a realistic multi- 

disciplinary optimization of a full aircraft configuration would require a number of other discipline 

codes, such as controls, performance analysis, propulsion, etc., we present this version for the sake 

of brevity. 

The structure of the program, as expressed in Opus, is shown in Figure 2, where the SDAs 

representing computational activities are represented by rectangles and the SDAs representing 

data repositories are represented by ovals. The Optimizer is the main task and coordinates the 

execution of the entire MDO application. 

As shown in Figure 3, the Optimizer creates the following SDAs: the data repositories Surface- 

Geom for sharing geometry and flow data between the two computational tasks, and Sensitivities 

for storing the sensitivity derivatives, and the computational tasks FeSolver for structural analysis 

of the aircraft configuration, and FlowSolver for aerodynamic analysis. Since the tasks FeSolver 

and FlowSolver use the other two SDAs to transfer data, the latter are passed in as arguments 

10 
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Figure 2: Data flow in a simple MDO application for aircraft design 

PROGRAM Optimizer 
SDA(FeSolverSDA)     FeSolver 
SDA(FlowSolverSDA) FlowSolver 
SDA(SGeomSDA) SurfaceGeom 
SDA(SensSDA) Sensitivities 

EVENT e 
TYPE(surface) geom 

/ - read input arguments and create SDAs 
CALL SurfaceGeom%CREATE(...) ON(MACHINE="ABC", PROCESSORS=4) 
CALL Sensitivities%CREATE(...) ON(MACHINE="ABC", PROCESSORS=4) 
CALL FeSolver%CREATE(SurfaceGeom, Sensitivities, )      & 

ON(MACHINE="XYZ", PROCESSORS=4) 
CALL FlowSolver%CREATE(SurfaceGeom, Sensitivities, )      k 

ON(MACHINE="XYZ", PROCESSORS=8) 
/ - initialize  geometry 

geom = GenBaseGeom(...) 

/ - optimization loop 
converged = .FALSE. 
DO WHILE (.NOT converged) 

SPAWN SurfaceGeom%PutBase(geom) 

e = SPAWN FeSolver%Analyze(...) 
CALL FlowSolver%Analyze(...) 
WAIT(e) 

e = SPAWN FeSolver%Gradient(...) 
CALL FlowSolver%Gradient(...) 
WAIT(e) 
converged =   Sensitivities%converged(...) 
IF ( .NOT converged) geom = ImproveGeom(geom) 

END DO 

/ - save SDAs if necessary 
! - kill all SDAs 

END 

Figure 3: Main program: Optimizer 

11 



as the former are being created. The on clauses associated with the create statements specify the 
resources to be used for the SDAs as shown in the code fragment from Figure 3 reproduced below: 

/ - read input arguments and create SDAs 
CALL SurfaceGeom%CREATE(...) ON (MACHINE="ABC'\ PROCESSORS = 4) 
CALL Sensitivities%CREATE(...) ON (MACHINE="ABC", PROCESSORS = 4) 
CALL FeSolver%CREATE(...) ON (MACHINE="XYZ", PROCESSORS = 4) 
CALL FlowSolver%CREATE(...) ON (MACHINE="XYZ", PROCESSORS = 8) 

All four SDAs are internally data parallel and use multiple processors for their executions. The 
two computation SDAs, FeSolver and FlowSolver are allocated on the machine "XYZ" and use 
four and eight processors respectively. On the other hand, the machine "ABC" is designated as 

the data server and the two SDAs SurfaceGeom and Sensitivities use four processors each on it. 
These processor allocations match up with HPF processor and distribution directives specified in 
the respective SDA type definitions. For example, since the SDA SurfaceGeom is allocated on 
four processors, the processor array P declared in its type definition (see SDA type SGeomSDA as 
shown in Figure 4) will be instantiated as an array of four processors. That is, for the SDA instance 
SurfaceGeom, the HPF function number.of .processors () will return four. As indicated before, the 
data within the SDA can now be distributed using the full power of the HPF mapping directives. 

The Optimizer controls the outer optimization loop while the FlowSolver and FeSolver handle 
the inner optimization cycle for a combined aeroelastic analysis of a given geometry. The Optimizer 
initiates execution of the inner cycle by storing the initial geometry in the SurfaceGeom SDA using 
the PutBase method. PutBase, as shown in Figure 4, stores the geometry in the variable base, 
initializes the variable deflected, and sets the logical variable DeflectFull to true. Based on this 
geometry, it also generates a finite element model, FeModel, to be used by the FeSolver task and 
an initial flow solution, FlowSoln, for the FlowSolver task. The Optimizer then calls the analysis 
methods in the FlowSolver and FeSolver tasks. Note since the former is activated asynchronously, 

the two analysis routines are executed in parallel. 
The Analyze method of the FeSolver task, shown in Figure 5, uses the GetFeModel method to 

obtain the finite element model generated on the basis of the current geometry. Similarly, it uses the 
GetSurfForces method to obtain the surface forces generated from the current flow solution. These 
two data items are used to compute the deflection of the aircraft configuration. The new deflected 
geometry is then put back into SurfaceGeom. Similarly, the FlowSolver task (not shown here) 
acquires the current geometry (using the GetDeflected method) and an initial flow solution (using 
the GetFlowSoln method) and produces a new flow solution which it puts back into SurfaceGeom. 

The inner aeroelastic optimization cycle continues until the deflections are within a specified 
tolerance limit. At each step of the cycle, the FeSolver uses forces based on the current flow solution 
to produce new deformations, while the FlowSolver uses the deflected geometry and the previous 
flow solution to produce a new solution. Note that the logical variables and the condition clauses 
in the SurfaceGeom SDA are set up to synchronize the parallel tasks. For example, the logical 
variable DeflectFull is used so that the old deflected geometry cannot be replaced by a new one 

until the old one has been accessed. 
After the inner cycle has converged, the Optimizer activates the Gradient methods of the dis- 

cipline tasks to generate the sensitivity derivatives with respect to the different design variables. 
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This data is stored in the Sensitivities SDA, not shown here, by the discipline tasks. Based on this 
data and the objective function, the Optimizer decides whether to terminate the program or to 
produce a new base geometry which is then put in SurfaceGeom to start a new round of the inner 
cycle. Once an optimal configuration of the aircraft has been achieved, the SDA data can be saved 
and the SDAs terminated. 

4    Opus Runtime Support 

In the previous two sections we have presented features of Opus and examples showing how these 
features can be used to encode interacting asynchronous data parallel tasks.   In this section we 
describe the runtime system required to support these features. 

The Opus runtime system consist of two layers ( see Figure 6): 

• a language-specific layer, providing the functionality for managing SDAs and their interaction 
via method calls, and 

• a language-independent layer, which provides support for thread-based data parallelism in 
parallel distributed environments. 

We discuss first the thread-based layer and then describe the implementation of method invo- 
cation, including the handling of distributed arguments in the Opus runtime system. 

4.1     Lightweight Threads 

As described in the previous sections, SDAs can be configured either as computation servers or as 
data servers. In general, the computation server tasks and the data servers will utilize the same 
(or overlapping) physical resources. Thus, any given processor in the system might be responsible 
for the simultaneous execution of multiple, independent SDAs. Execution of these SDAs could be 
implemented on Unix-based systems by mapping each unit to a process. However, this process- 
based approach has several drawbacks, including the inability to control scheduling decisions for the 
SDA methods, the inability to share addressing spaces between SDAs, and costly context switching 
between SDAs. In light of these disadvantages, our runtime system utilizes lightweight, user-level 
threads to represent the parallelism within and among SDAs. This decision is consistent with most 
other runtime systems supporting parallel or concurrent programming languages [4, 7, 14]. 

A lightweight, user-level thread is a unit of computation with minimal context that executes 
within the domain of a kernel-level entity, such as a Unix process or Mach kernel thread. Lightweight 
threads are becoming increasingly useful in supporting language implementations for both parallel 
and sequential machines by providing a level of concurrency within a kernel-level process. 

The language-independent layer of the OPUS runtime system is based on Chant. Chant provides 
both a standardized interface for thread operations (as specified by the POSIX thread standard [25]) 
and communication among threads using either point-to-point primitives (such as those defined in 
the MPI standard [23]) or remote service requests. Chant also supports data parallel groups of 
threads (called ropes) for executing collective operations, such as broadcast and reductions. A 
description of Chant, and its current status, can be found in [17, 19]. 
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The Opus runtime system is primarily concerned with the management of SDAs and their 
interaction via method calls. The underlying HPF runtime system will deal with issues of data 
parallelism and distribution. In the initial design, we have concentrated on the interaction of 
SDAs through method calls (namely method invocation and argument handling), and have taken 
a simplified approach to resource management. We presume that all the required resources are 
statically allocated and the appropriate code is invoked where necessary. We will later extend the 
design of the runtime system to support dynamic acquisition of new resources. 

The interaction between SDAs requires runtime support for both method invocation and method 
argument handling. We now explore these issues in further detail. 

4.2    SDA Method Invocation 

The semantics of SDAs places two restrictions on method invocation: 

• each method invocation has exclusive access to the SDA data (i.e., only one method for a 

given SDA can be active at any one time), and 

• execution of each method is guarded by a condition clause, which must evaluate to true before 

the method code can be executed. 

An SDA method call can be either synchronous or asynchronous. A synchronous method call 
will suspend the calling program until the SDA method returns; an asynchronous method invocation 
will allow the caller to continue execution and test for method termination with an event variable. 

We can view an SDA as being comprised of two components: a control structure which executes 
the SDA methods in accordance with the stated restrictions, and a set of SDA data structures. To 
enable proper execution of SDAs, each SDA method is compiled into three functions: 

1. The method code. This function embodies the method code as specified by the programmer. 
It uses a generic method call interface that permits the invocation of all SDA method calls 

in a uniform manner. 

2. The condition function. This is a boolean function that evaluates the condition clause that 
may be associated with an SDA method. The condition clause must be locally evaluated to 

ensure that race conditions do not occur. 

3. The method interface. This is a stub function that provides the method's public interface to 
the calling units and is used to access the SDA method code from another program unit. 

Since all SDAs are servers, either for data or computation, each instance of an SDA is represented 
by a server loop (as depicted in Figure 7) which waits for messages from the method interfaces of 
other units and takes appropriate action as specified by the message. The SDA instance incorporates 
a data structure that includes pointers to the condition and method functions for each method along 
with a queue of outstanding method invocation requests. 

The algorithm in Figure 7 depicts the main loop of an SDA server. On receiving a message from a 
method interface routine, the SDA creates a new execution record including a unique identification 
for the request. This record is sent back to the caller as acknowledgment. The SDA gathers 
any input arguments using non-blocking receives (so as not to impose an artificial ordering on the 
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incoming messages) and enqueues the execution record in the appropriate list. The SDA then selects 
the next method request which is ready for execution. A method request is ready for execution if 
all its arguments have been received and the associated condition is true. After execution of this 
method request, the results, if any, are sent back to the caller. A completion signal is also sent back 
to the caller and the execution record is dequeued from the method request list. This reevaluation 
of condition functions is repeated until no further methods can be executed, at which time the SDA 
continues waiting for further method requests. 

Figure 8 shows a generic method interface routine used by the calling task to invoke a method. 
After the method request is sent, the caller waits for an acknowledgment and then sends the values of 
the input arguments to the callee. If the method activation was synchronous, the caller waits for the 
results and for the completion signal before returning. If the method activation was asynchronous, 
it posts non-blocking receives for the results and the completion signal. The execution record is 
returned to be stored as the event associated with the method activation. This allows the caller 
to continue execution without the completion of the method call. The event (i.e., the execution 
record) can be used later in a wait or test statement to test for the completion of the method call. 

4.3    Distributed Argument Handling 

In the previous subsection, we described the protocol for invoking methods under the implicit 
assumption that both the calling SDA and the called SDA run on a single processor. However, 
the language allows both to be distributed; furthermore, the distributions of the actual and the 
formal arguments of method calls may not match. Thus, the Opus runtime system must have 
a mechanism for redistributing data at method invocation time. To examine the details of our 
prototype implementation, let us consider what happens when a distributed task calls a method in 
a distributed SDA, referring to the pictorial representation in Figure 9. 

If an SDA type is internally distributed, an SDA instance of this type is represented by a rope, 
which is a data parallel group of threads spread across the set of processors. One of the threads 
is designated the leader thread while the other threads are worker threads. Method invocation 
between distributed SDAs then works as follows (the pseudocode for the main loop of the SDA 
leader and the workers of a distributed SDA is shown in Figure 10): 

1. The leader thread of the rope associated with the caller (the caller rope) sends a method 
request message to the leader thread of the rope associated with the called SDA (the callee 
rope) (Figure 9.1). Along with other information, this message also contains the distribution 
specifications for the actual method arguments. 

2. The leader of the callee rope then creates an execution record containing the distribution 
specifications of the dummy method arguments and sends it back to the leader of the caller 
rope. It also notifies its workers of the method request (Figure 9.2), along with the distribution 
specifications of the actual arguments. 

3. The leader of the caller rope then informs all its workers of the dummy argument distribution 
information it has received. At this point, all threads involved in the method invocation 
have the distributions of both the dummy and actual arguments, and can create their own 
communication schedules as discussed below (Figure 9.3). 
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4. Once the communication schedules have been computed, the threads of the caller rope send 
data messages directly to the appropriate threads of the callee rope (Figure 9.4). The data 
is received by these threads through non-blocking receives. 

5. The leader of an SDA rope chooses the next ready method to execute and informs all its 
workers. The method is executed and all threads of the callee rope send any return messages 
back to the threads of the caller rope using the previously computed communication schedule 
(Figure 9.5). The leader of the callee rope then sends a completion signal to the leader of the 

caller rope. 

The leader of the callee rope controls which method request is to be executed next, and thus 
sends to its worker threads messages for new method requests or for execution of already queued 
requests. In the former case, as shown in Figure 10, the worker threads independtly compute their 
communication schedules and post their receives. In the latter case, they execute the method and 

send back the results. We currently assume that the condition code is executed solely by the leader 
and only uses information which is replicated across the rope and thus can be accesses locally by 

the leader. 
Determining the communication schedule, i.e., what elements of an array are to be sent or 

received from which thread, is a complex task. Several groups have been studying algorithms and 
heuristics to determine the most efficient schedule [2, 11, 16, 22, 26, 27, 31]. We have adopted (and 
augmented) the finite state machine (FSM) method for local address set calculation developed by 
Chatterjee et al. [11] in our current prototype. The FSM method exploits the repeating patterns of 
local array indices to determine the elements of a distributed array that each thread owns. Since all 
threads can do this calculation simultaneously, there is no gather/scatter operation required. We 
have extended this work by creating a second FSM such that, for each local element of the array 
yielded by the original FSM, the thread can determine the destination thread it must communicate 
with. Each thread in the sender creates a list of elements for each destination thread which is then 
aggregated into a single message for each other thread and transmitted. Thus, each destination 
thread will receive at most one message from each sending thread. In addition, each receiving thread 
can use the same FSM method along with the sender's distribution information to determine from 
whom it should receive messages and what the contents will be. Consequently, the messages contain 
only raw data, eliminating the overhead of transmitting indices. 

We have developed a prototype implementation of the Opus runtime system, which is currently 
running on a cluster of workstations using p4 and the Intel Paragon using NX. This implementation 
handles distributed arguments in synchronous method calls. A complete description of the system 

and some preliminary results can be found in [20]. 

5    Related Work 

Task management has been a topic of research for several decades, particularly in the operating 
systems research community. A good survey of the issues can be found in [3]. However, there has 
not been much attention given to the mechanisms required for managing control parallel tasks, 

which may themselves be data parallel. In this section we discuss some of these approaches. 
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Fortran M [13] extends Fortran 77 with a set of features that support message-passing, ac- 
cording to a strictly enforced discipline. Processes - program modules encapsulating data and code 
that are executed concurrently - can be interact via channels; each channel establishes a one-to-one 
connection between typed ports, essentially representing a message queue*. Communication is per- 
formed by sending and receiving from ports. Processes are activated by executing a process block - 
a PARBEGIN/PAREND like construct - or by creating multiple instances in a process loop. The 
language has constructs for controlling the location of process executions and distributing data 
in an HPF-like manner. By imposing a FIFO discipline on message queues and guaranteeing a 
sequential semantics for output arguments determinism is enforced. 

Fortran M can be used to create and coordinate processes in a clean and structured way. How- 
ever, the relatively low level of abstraction associated with the message-passing paradigm, together 
with the structure imposed on the use of channels and ports for the sake of achieving determin- 
ism sometimes leads to difficulties expressing simple and useful communication structures. Such 
examples include producer-consumer problems with multiple producers and consumers accessing a 
bounded buffer, or the variants of the readers-writers problem. 

Recent work at Argonne and Syracuse [15] integrates HPF with the message passing standard 
MPI. In this approach, data parallel HPF tasks may exchange distributed data structures by directly 
using calls to MPI communication functions. 

The Fx Fortran language extensions developed at CMU [28, 29] include parallel sections that 
allow the concurrent activation of subroutines as tasks. Tasks communicate through arguments. 
Arguments can be passed to a task at the time of its activation, or received from a task when it 
terminates. Each call that activates a task must be accompanied by input and output directives that 
specify the shared objects. This provides the compiler with complete information on the required 
communication. 

Fx is well suited to an environment where tasks need to communicate only at the time of spawn- 
ing and termination, and where nested task-parallelism is not required. If tasks must communicate 
during their execution, subroutines may have to be split at synchronization points to obtain smaller 
program units that fit into this scheme. Moreover, this would clearly induce task-spawning over- 
head. 

LINDA [1] provides a virtual shared tuple space, to which read and write operations can be 
applied. It represents a simple and easily usable parallel programming paradigm. However, LINDA 
lacks the modularity that is required for structuring multidisciplinary applications, and does not 
allow sufficient control of task execution and resource allocation. 

Orca [5] provides an object model similar to SDAs called abstract data types (ADTs). Both 
ADTs and SDAs represent abstract data types that can be distributed over a set of processors using 
conventional data parallel mapping directives. Both apply operations to their elements using the 
owner-computes rule. Aside from implementation issues, the main difference between ADTs and 
SDAs is in the "server" nature of the SDA. All SDAs run implicit server loops to handle incoming 
requests, and SDA methods can be invoked both synchronously and asynchronously, where the 
decision can be made at the call site. This allows SDAs to behave as computation servers as well 
as data servers. Orca objects deliberately lack such a server, to allow concurrent read operations 
on different copies of an object. 

'In addition, many-to-one communication can be expressed. 
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SVM Fortran [6] is a set of extensions for Fortran 77 intended to program shared virtual 
memory systems. Among a large number of features, it provides support for fine-grained control 
parallelism in a shared memory paradigm along with mechanisms to synchronize and coordinate 

these tasks. 
Other approaches which provide support for managing task parallelism at a high level include 

PVM [30], CC++ [8] and Strand [12]. Most of these approaches do not address the issue of 

integrating task and data parallelism. 

6    Conclusions and Future Research 

Complex scientific applications, such as multidisciplinary optimization, provide opportunities for 

exploiting multiple levels of parallelism, but also raise complex programming issues. The coordi- 
nation language Opus, presented in this paper, supports the multiple levels of parallelism arising 

in multidisciplinary applications, and also provides support for software engineering issues arising 
when integrating codes from individual disciplines into a single working application. 

A partial implementation of Opus has been built, using the Chant runtime system. Performance 
of a simplified multidisciplinary application code has been studied using this implementation. The 
cost of a typical SDA method call with distributed arguments appears to be reasonable and our 
design scales with the number of processors. Given these preliminary results, a full prototype im- 
plementation of Opus has begun. Since Chant runs on a large number of multiprocessor platforms, 
this prototype will be widely portable, and should prove useful in a number of important applica- 
tions. We also plan to explore the research issues of supporting parallel method calls within the 

same SDA and condition evaluation based on distributed data structures. 
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SDA TYPE SGeomSDA(...) 
!HPF$ PROCESSORS P(number_of_processorsQ) 

TYPE(surface) base, deflected 
TYPE(flow) FlowSoln 
TYPE(fe) FeModel 

!HPF$ DISTRIBUTE base .... 

LOGICAL DeflectFull = .FALSE. 
LOGICAL FeFull       =  FALSE. 

CONTAINS 
SUBROUTINE PutBase(b) 

TYPE(surface), INTENT(IN) ::  b 
base = b;   deflected = b 
FeModel =   GenFeModel(b, FeModel) 
FlowSoln = InitSoln(b) 
DeflectFull = .TRUE. 
FeFull       = .TRUE. 

END 

SUBROUTINE PutDeflected(d) WHEN (DeflectFull .EQ. .FALSE. 
TYPE(surface), INTENT (IN) ::  d 
deflected    = d 
DeflectFull = .TRUE. 

END 

SUBROUTINE GetDeflected(d) WHEN (DeflectFull .EQ. .TRUE.) 
TYPE(surface), INTENT(OUT) ::  d 
d = deflected 
DeflectFull = .FALSE. 

END 

SUBROUTINE GetFeModel(f) WHEN (FeFull .EQ. .TRUE.) 

SUBROUTINE GetSurfForces(f) 

SUBROUTINE GetFlow(f) 

SUBROUTINE PutFlow(f) 

LOGICAL FUNCTION within_tol(...) 

END SGeomSDA 

Figure 4: Surface Geometry SDA 
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SDA TYPE FeSolverSDA(Surf, Sens, ...) 
SDA(SGeomSDA) Surf 
SDA(SensSDA) Sens 

!HPF$ PROCESSORS P(number-of_processors()) 

CONTAINS 
SUBROUTINE Analyze(...) 

converged = .FALSE. 
CALL Surf%GetFeModel(FeModel) 

/ - discipline optimization loop 
DO WHILE (.NOT converged) 

CALL Surf%GetSurfForces(forces) 
CALL fesolve(forces, FeModel, deflect, 
CALL Surf%PutDeflected(deflect) 
converged = Surf%within_tol(...) 

END DO 

END 

SUBROUTINE Gradient^..) 

sens = ... 
CALL Sens%PutFeSens(sens) 

END 
END FeSolve 

Figure 5: Finite Element Solver 

Opus Language/Compiler 

Opus Runtime 

Language-Dependent 

Language-Independent 

Threaded Runtime (Chant) 

Figure 6: Runtime layers for SDA support 
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Do forever { 

Wait for method request for method m from caller 

Create new execution record X 

Send X to caller as acknowledgment 

Post receives for input arguments from caller 
Enqueue X in queue for method m 

Repeat 

Select next ready method request Y 

Execute method Y 

Send results to caller 

Send completion signal to caller 
Dequeue Y 

Until no more method requests are ready 

Figure 7: Pseudocode for an SDA main loop 

Send method request to SDA 

Wait for execution record X as acknowledgment 
Send actual arguments to callee 

If activation_type = asynchronous 
Post receives for results 

Post receive for completion signal 
Return X 

else 

Wait for results 
Wait for completion signal from callee 

endif 

Figure 8: Pseudocode for a method call interface 
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method call. 

Figure 9: Illustration of the method invocation process for distributed SDAs 
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SDA leader: 

Do forever { 

Wait for method request for method m from caller 

including distributions of actual arguments 
Create new execution record X 

including distributions of formal arguments 

Send X to leader thread of caller as acknowledgment 
Send X to all workers 

Compute communication schedule 

Post receives for input arguments from caller 
Enqueue X in queue for method m 
Repeat 

Select next ready execution record Y 

Send Y to all workers 
Execute method Y 

Send results to caller 

Send completion signal to leader thread of caller 
Dequeue Y 

Until no more method requests are ready 

} 

SDA Workers: 

Do forever { 

Wait for message from leader 

If new method execution record X received 

Compute communication schedule 

Post receives for input arguments from caller 
Enqueue X in queue for method m 

else 

Execute method X 

Send results to caller 

Dequeue X 
endif 

} 

Figure 10: Main loops for leader and workers in a distributed SDA 
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